Copied to
clipboard

G = M4(2).10C23order 128 = 27

10th non-split extension by M4(2) of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2).10C23, C4oD4.34D4, D4.14(C2xD4), C8.122(C2xD4), (C2xC8).358D4, Q8.14(C2xD4), C4o(D4.5D4), C4o(D4.4D4), C4o(D4.3D4), D4.5D4:8C2, D4.3D4:7C2, D4.4D4:8C2, (C2xD4).226D4, (C2xD8):49C22, (C2xC4).18C24, (C2xQ8).181D4, D8:C22:8C2, (C2xC8).263C23, (C2xQ16):54C22, C8oD4.11C22, C4oD4.30C23, (C2xD4).72C23, C4.165(C22xD4), C8:C22.4C22, (C2xQ8).60C23, C4.176(C4:D4), C8.C4:18C22, (C2xSD16):57C22, C4.D4:14C22, C8.C22.3C22, C23.112(C4oD4), C4.10D4:14C22, C22.36(C4:D4), (C22xC8).267C22, (C22xC4).993C23, (C2xM4(2)).61C22, M4(2).8C22:4C2, (C2xC8oD4):9C2, (C2xC4oD8):19C2, C2.89(C2xC4:D4), (C2xC8.C4):28C2, (C2xC4).1430(C2xD4), C22.21(C2xC4oD4), (C2xC4).833(C4oD4), (C2xC4oD4).131C22, SmallGroup(128,1799)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — M4(2).10C23
C1C2C4C2xC4C22xC4C2xC4oD4C2xC8oD4 — M4(2).10C23
C1C2C2xC4 — M4(2).10C23
C1C4C22xC4 — M4(2).10C23
C1C2C2C2xC4 — M4(2).10C23

Generators and relations for M4(2).10C23
 G = < a,b,c,d,e | a8=b2=1, c2=a6b, d2=e2=a4, bab=a5, cac-1=a-1b, dad-1=a3, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a6bc, ce=ec, de=ed >

Subgroups: 412 in 226 conjugacy classes, 98 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, C4.D4, C4.10D4, C8.C4, C22xC8, C22xC8, C2xM4(2), C2xM4(2), C2xM4(2), C8oD4, C8oD4, C2xD8, C2xSD16, C2xQ16, C4oD8, C8:C22, C8:C22, C8.C22, C8.C22, C2xC4oD4, C2xC4oD4, M4(2).8C22, C2xC8.C4, D4.3D4, D4.4D4, D4.5D4, C2xC8oD4, C2xC4oD8, D8:C22, M4(2).10C23
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C24, C4:D4, C22xD4, C2xC4oD4, C2xC4:D4, M4(2).10C23

Smallest permutation representation of M4(2).10C23
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(26 30)(28 32)
(1 9 7 15 5 13 3 11)(2 16 4 10 6 12 8 14)(17 26 19 28 21 30 23 32)(18 29 24 27 22 25 20 31)
(1 9 5 13)(2 12 6 16)(3 15 7 11)(4 10 8 14)(17 32 21 28)(18 27 22 31)(19 30 23 26)(20 25 24 29)
(1 31 5 27)(2 32 6 28)(3 25 7 29)(4 26 8 30)(9 18 13 22)(10 19 14 23)(11 20 15 24)(12 21 16 17)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(26,30)(28,32), (1,9,7,15,5,13,3,11)(2,16,4,10,6,12,8,14)(17,26,19,28,21,30,23,32)(18,29,24,27,22,25,20,31), (1,9,5,13)(2,12,6,16)(3,15,7,11)(4,10,8,14)(17,32,21,28)(18,27,22,31)(19,30,23,26)(20,25,24,29), (1,31,5,27)(2,32,6,28)(3,25,7,29)(4,26,8,30)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(26,30)(28,32), (1,9,7,15,5,13,3,11)(2,16,4,10,6,12,8,14)(17,26,19,28,21,30,23,32)(18,29,24,27,22,25,20,31), (1,9,5,13)(2,12,6,16)(3,15,7,11)(4,10,8,14)(17,32,21,28)(18,27,22,31)(19,30,23,26)(20,25,24,29), (1,31,5,27)(2,32,6,28)(3,25,7,29)(4,26,8,30)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(26,30),(28,32)], [(1,9,7,15,5,13,3,11),(2,16,4,10,6,12,8,14),(17,26,19,28,21,30,23,32),(18,29,24,27,22,25,20,31)], [(1,9,5,13),(2,12,6,16),(3,15,7,11),(4,10,8,14),(17,32,21,28),(18,27,22,31),(19,30,23,26),(20,25,24,29)], [(1,31,5,27),(2,32,6,28),(3,25,7,29),(4,26,8,30),(9,18,13,22),(10,19,14,23),(11,20,15,24),(12,21,16,17)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I8A8B8C8D8E···8J8K8L8M8N
order12222222244444444488888···88888
size11222448811222448822224···48888

32 irreducible representations

dim1111111112222224
type+++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D4C4oD4C4oD4M4(2).10C23
kernelM4(2).10C23M4(2).8C22C2xC8.C4D4.3D4D4.4D4D4.5D4C2xC8oD4C2xC4oD8D8:C22C2xC8C2xD4C2xQ8C4oD4C2xC4C23C1
# reps1214221124112224

Matrix representation of M4(2).10C23 in GL4(F17) generated by

001212
00125
51200
121200
,
1000
0100
00160
00016
,
12500
121200
00125
001212
,
121200
12500
00512
001212
,
13000
01300
00130
00013
G:=sub<GL(4,GF(17))| [0,0,5,12,0,0,12,12,12,12,0,0,12,5,0,0],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[12,12,0,0,5,12,0,0,0,0,12,12,0,0,5,12],[12,12,0,0,12,5,0,0,0,0,5,12,0,0,12,12],[13,0,0,0,0,13,0,0,0,0,13,0,0,0,0,13] >;

M4(2).10C23 in GAP, Magma, Sage, TeX

M_4(2)._{10}C_2^3
% in TeX

G:=Group("M4(2).10C2^3");
// GroupNames label

G:=SmallGroup(128,1799);
// by ID

G=gap.SmallGroup(128,1799);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,248,2804,172,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=1,c^2=a^6*b,d^2=e^2=a^4,b*a*b=a^5,c*a*c^-1=a^-1*b,d*a*d^-1=a^3,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^6*b*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<